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Abstract: There are multiple reasons why anisotropic basis functions may
be needed or be more appropriate. The most obvious is that if the basis
function is to be defined on R™ x T then there is no natural norm on this
space that would reflect the unique properties of time. A second reason
is that function being interpolated or approximated may incorporate a di-
rectional dependence. Thirdly, differentiability of the basis function is often
critical, i.e., partial differentiability. Separating the differentiability from one
dimension to another may be necessary, e.g., differentiability with respect to
time as contrasted with differentiability with respect to a space coordinate.
Positive definiteness (or conditional positive definiteness) is often dependent
on the dimension of the space. Thus construction of non-radially symmetric
basis functions which can easily be shown to be strictly positive definite is
important, a number of examples and general methods will be given.
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1. The Importance of Positive Definiteness and Conditional
Negative Definiteness

To ensure a unique solution for the coefficients in a radial basis function
(RBF) interpolator or in the Kriging estimator it is necessary to have a
positive definite function (p.d.), i.e., a covariance function or a conditionally
negative definite function (c.n.d), i.e., a generalized covariance. In either case
the function must be “strict”, i.e., p.d. and not just non-negative definite
[9], [1]. In geostatistics it is common to “fit” the data to a valid model
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(a covariance function or a variogram), see [5]. The software will normally
provide the user with a list of valid isotropic (radial) models, positive linear
combinations are also valid [6]. In the numerical analysis literature it is
common to choose the basis function independently of the data.

2. Motivation for Anisotropic Basis Functions

Recall that F(z) defined on R is radial (also called isotropic) if there is a
function f(z) defined on R such that F(z) = f(||z||). Let B be an affine
transformation on R?, then F*(x) = f(||Bx||) is anisotropic (this is called
a geometric anisotropy). There are at least two kinds of problems where
an anisotropic basis function might be desirable. One is for the extension
to space-time, i.e., the basis function is to be defined on R% x T. One
might utilize a norm of the form ||h||? + c?|¢|? but the resulting model has
undesirable properties and does not scale well with changes in the units. A
second instance is where the basis function is defined on R% x R% and the
behavior of the function should be different on the two subspaces. Clearly
the geometric anisotropy is not appropriate for either of these two cases, [8].

3. Some Important Properties and Connections

In general both positive definiteness and “strictness” are dimension depen-
dent. For example the hat function is strictly p.d. on R but not on RZ2.
However both properties are inherited on lower dimensions.

3.1. Marginals

Let C(z,y) be strictly p.d. on R% x R% then C(z,0) is strictly p.d. on R%
and C(0,y) is strictly p.d. on R%. Likewise if v(z,y) is strictly c.n.d. on
R% x R% then ~(z,0) is strictly c.n.d. on R® and 4(0,y) is strictly c.n.d.
on R%. These associated functions are called marginals, see [2], [3]. These
generalize to other decompositions of R? and also of R x T'. Marginals may
be projected on any lower dimensional space but it is likely that the most
interesting ones are projected on 1-dimensional spaces.
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3.2. Boundedness Properties

Positive definite functions (whether strict or not) are bounded but need not
tend to zero at infinity. In the case of isotropic p.d. functions that have
compact support or are asymptotic to zero, the distance a such C(r) = 0
for r > a is called the range. In the case of p.d. functions with an geometric
anisotropy the range may be directionally dependent. If the p.d. function is
only asymptotic to zero then there still may be an “effective range”, i.e., a

. distance such that C(r) < .05C(0) for 7 > a. C(0) is often called the “sill”.

In contrast c.n.d. functions need not be bounded but must grow at less than
a quadratic rate. Recall that if C(h) is p.d. on R%, then

v(h) = C(0) — C(h)
is c.n.d.. Conversely if a c.n.d function is asymptotically bounded then it
can be written in this form.

3.3. Review of Algebraic Properties

If Ci(z) is strictly p.d. on R% and Cs(y) is strictly p.d. on R%, then
A1C1(z) + A2Cs(y) is p.d. on R% x R% for any positive constants A, Ag
but not necessarily “strictly”. However C;(z) x C3(y) is strictly p.d. on
R% x R%. Likewise, if 41(z) is strictly c.n.d. on R% and vo(y) is strictly
cn.d. on R%, then A;vy(x) + Ay(y) is c.nd. on RA x R% for any
positive constants A;, A2 but not necessarily “strictly”. However in general
v1(z) X v(y) is not c.n.d., in particular it may not satisfy the quadratic
growth rate.

4. Construction of Anisotropic Basis Functions

The level curves of isotropic basis functions are circles (or their analogues
in higher dimensional spaces). Basis functions with a geometric anisotropy
have elliptical level curves. More generally the level curves may be much
more complex.
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4.1. Product-Sum Model

Let C1(h),Ca(h) be strictly p.d. functions on R%,R% respectively and
A1 >0, Ag, A3 > 0, then
C(h, h/) = A101(h) X Cg(h,) + AxCh (h) + A302(h')
strictly p.d. on R% x R% If v(h,h') is the associated c.n.d. function then
the product sum model may be written in the form
v(h, b') = v(h, 0) + (0, ') — K~(h,0) x (0, k'),
where K is a constant satisfying 0 < K < (1/max(C;(0), C2(0))), see [2], [3].
Hence given 7 (h),v2(h'), asymptotically bounded strictly c.n.d. functions
on R%, R% respectively then
v(h, B') = y1(h) + 12 (h') — Ky1(h) x 72(R)
is strictly c.n.d on R% x R%. This will easily generalize to a product-sum
involving more factors.

4.1.1. Powered Exponential Basis Function

For simplicity consider the case of R? then this basis function can be written
in the form

C(z,y, 2) = exp(—(||/b1)* — (ly|/b2)** — (|2|/b3)*),
where by1,b9,b3 > 0 and 0 < a1,a9,a3 < 2. This strictly p.d. function is
the product of three strictly p.d. functione, each defined on a 1-dimensional
subspace. The case of a; = a3 = a3 = 1 is just an exponential model that is
widely used in hydrology. The case of a; = a2 = a3 = 2 is just a Gaussian
model. To see how this generalizes, consider the case where d; = dy = 1
then the associated c.n.d. function is

v(@,y) =1 —exp[—(|z[/b1)*] + 1 — exp[—(|y|/b2)*]
— K12(1 — exp[—(|z]/b1)*]) -
(1 —exp[—(lyl/b2)*]) = (2 — K12) — (1 — K12) exp[—(|z|/b1)*]
— (1 = K12) exp[—(|yl/b2)**] — K12(exp[—(|x]/51)" ])(exp[—(ly|/b2]**) -

When K12 = 1 the model is just the powered exponential. Again this will
easily generalized to more factors.
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4.1.2. Truncated Linear-Hat Function

Let
1—|z|/b, if 0L |z| <D,
Cly = {1 lal, i 0l <
' 0, if |z|>b.
This is usually known as the hat function and is strictly p.d. on R but
is not strictly p.d. on higher dimensional spaces, see [1]. The associated
c.n.d function is sometimes known as the Truncated linear function. Either
function can be extended to higher dimensions using a product-sum model.
Let
z|/b;, if 0L |z| <b;,
ey = {0 lal <
1, if |z|>b,
and set

V(@,y) = mn(z) +7(y) - K12n1(2)72(y) -
This function is strictly c.n.d on R2. If K12 = 1 it reduces to the product
model.

4.2. Some Comments on These Examples

a) The product-sum easily generalizes to more marginals, there will be
additional constants in that case. The signs on these constants will alternate
and the maximal value will decrease as the number of factors in the product
increases.

b) In each of the product-sum generalizations above, each marginal was
of the same type. This is not necessary, the generalization will reduce to the
product with the maximal value of K12.

¢) The component marginals in the product-sum models need not be
isotropic (on the lower dimensional space).

4.3. The Extension to Space-Time

There are examples in the literature, where R% x T is treated as a normed
space, i.e. with a norm ||h|| + c?|t|?, where the constant c? is supposed to

‘compensate for the discrepancy between space and time. However this is

not scale/unit change invariant. Thus the dependence on space and on time
should be “separated”, i.e. radially symmetric models on R? x T' would not
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be appropriate.

5. Gneiting’s Construction for Space-time P.D. Functions

Beginning with Bochner’s Theorem and properties of completely monotone
functions, [4] essentially combined the two ideas.

As is well known, if ¢(u) is a completely monotone function then C(h) =
#(||h||?) is a radially symmetric (isotropic) p.d. function on R? for all di-
mensions

Let ¢(u),u > 0 be a completely monotone function and ¥(w),w > 0 be

any positive function with completely monotone derivative. W.l.0o.g. assume
that ¢(0) =1 and ¥(0) = 1. Then
C(h,t) = [o* /(i) *1(| 1Al /(1))
is a strictly p.d. function on R* x T
Note the interaction between space and time, i.e., as the time incre-

ment increases the spatial dependence decreases. The spatial and temporal
marginals are

C(h,0) = a*P(|[h|[*), C(0,t) = [o*/8(|t)?].
Using these marginals a product sum model can be constructed.
Cps(h, t) = di[o*d(|[Al1%)/%(1t]*)*? + dao®(I|RII*) + dalo? /% (1t*) ],
which still incorporates interaction but in a different way.
Geniting’s construction might be used on R% x R% but there seems less

justification for choosing one of the two subspaces play a special role in the
interaction.

6. Problems and Summary
6.1. Theoretical

Because of the equivalence between p.d. functions and covariance func-
tions it seems reasonable that for a spatial model, C(h) = C(—h) (even for
‘an anisotropic model). Likewise, it seems reasonable that for a space-time
model, C(h,t) = C(—h,t). However the following do not seem so reasonable:
C(h,t) = C(h,—t), C(h,t) = C(—h,—t).
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However both the product-sum models and Gneiting’s model do satisfy
these equalities.

6.2. Practical

Data is usually costly both in money and in time. If the data is collected
by an instrument, once set up can it often collect data for many time points
rather easily but each new setup will be costly. Hence data is often sparse
in space but rich in time. This may lead to numerical problems, i.e., the
coefficient matrix may be ill-conditioned.
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